A Comparison of Sampling Strategies for Parameter Estimation of a Robot Simulator
نویسندگان
چکیده
Methods for dealing with the problem of the “reality gap” in evolutionary robotics are described. The focus is on simulator tuning, in which simulator parameters are adjusted in order to more accurately model reality. We investigate sample selection, which is the method of choosing the robot controllers, evaluated in reality, that guide simulator tuning. Six strategies for sample selection are compared on a robot locomotion task. It is found that strategies that select samples that show high fitness in simulation greatly outperform those that do not. One such strategy, which selects the sample that is the expected fittest as well as the most informative (in the sense of producing the most disagreement between potential simulators), results in the creation of a nearly optimal simulator in the first iteration of the simulator tuning algorithm.
منابع مشابه
Estimation and Calibration of Robot Link Parameters with Intelligent Techniques
Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...
متن کاملParticle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملهمکاری رباتها در جابجایی جسم نامعین توسط کنترلر امپدانسچندگانه
Parameter identification techniques are particularly attractive to determine the inertial parameters of robot manipulators and manipulated payloads. These parameters are particularly needed in implementation of a model-based controller for robot manipulators. In this paper, the inertial parameters of a manipulated rigid-body object have been estimated. The Newton-Euler equations will be employe...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملStudy of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012